Motion-coherent Affinities for Hypergraph based Motion Segmentation CAIP 2017

Kai Cordes, Christopherus Ray'onaldo, and Hellward Broszio

VISCODA GmbH

22. Aug. 2017

VISCODA

VISCODA GmbH

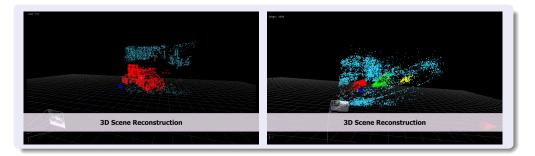
- Foundation: August 2011
- Small to medium sized enterprise

Key Technologies

- Strong background in Computer Vision
- Structure from Motion (SfM)
- Real-time processing

 \rightarrow Software development / series production VW/AUDI: ADAS (*zFAS*)

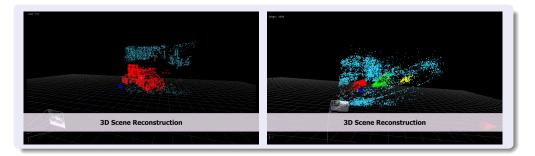
- Real-time structure from motion
- Moving obstacle detection
- \rightarrow EU Project 5GCAR


 $\rightarrow \dots$

VISC

Motivation

Scene Reconstruction including Moving Objects


- Motion Segmentation using feature trajectores
- Multiple Structure from Motion
- Composition of scenes

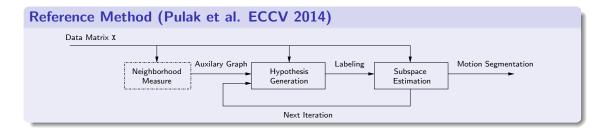
Motivation

Scene Reconstruction including Moving Objects

- Motion Segmentation using feature trajectores
- Multiple Structure from Motion
- Composition of scenes

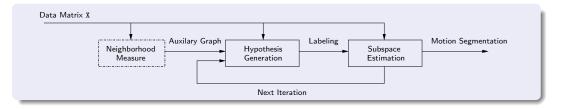
Outline

- **1** Motion Segmentation based on Hypergraphs
- **2** Incorporation of Motion-coherent Affinities
- **③** Experimental Results
- **4** Conclusions



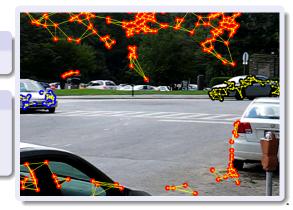
Motion Segmentation

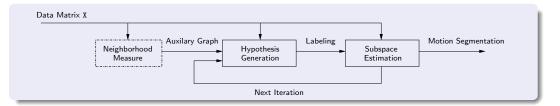
- Goals: Classify trajectories to different motions
 - Subspace estimation based on hypothesis generation and validation: (*sampling*)
 - Hypergraphs incorporate higher order similarities
 - Pulak et al. (ECCV 2014): large hyperedge degrees beneficial



- 155 sequences
- Trajectories of features visible in all frames
- Ground truth annotations

Auxiliary Graph:Guides samplingHypothesis Generation:Swedsen-Wang sampling using
Random Cluster Model (RCM)Subspace Estimation:Compute motion models and
measure subspace error

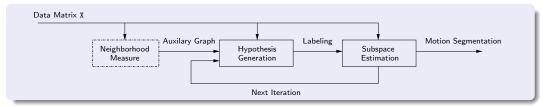



Auxiliary Graph

• Neighborhood structure: Graph G

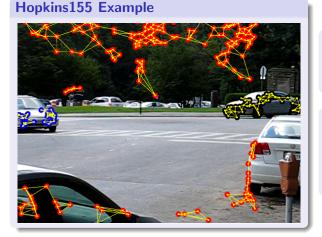
Neighborhood Measure: Spatial Proximity

- k-nearest neighbor algorithm (k=3)
- Vertices v_i, v_j in G are connected if v_i is a k-nearest neighbor of v_j



Hypothesis Generation

- Uses auxiliary graph
- Random Cluster Model / Swedsen-Wang sampling
 - Edge probabilities based on neighborhood distances
 - Bond variable switches edges on / off
 - Condition: random number < edge weight


Subspace Estimation

- · Compute motion models of the current labeling
- Determine subspace error

Auxiliary Graph

- Increases probability to generate a clean sample
- Reduces required number of samples

Nicely separated subgraphs

- No edges between different motion models
- Usual case in Hopkins155 benchmark
- Provides only trajectories which are visible in every frame
- Short trajectories removed

Auxiliary Graph

- Increases probability to generate a clean sample
- Reduces required number of samples

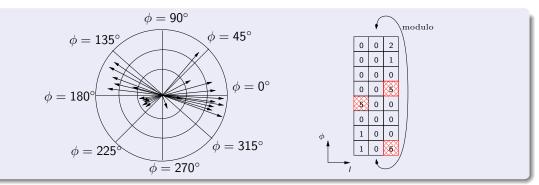
MTPV Example

- MTPV more challenging
- Benchmark includes short trajectories as well
- Spatial distance not a good measure for building auxiliary graph
- \Rightarrow Auxiliary graph less beneficial

Outline

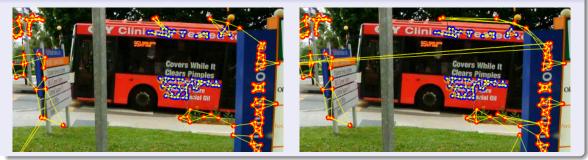
1 Motion Segmentation based on Hypergraphs

2 Incorporation of Motion-coherent Affinities


③ Experimental Results

4 Conclusions

Design New Auxiliary Graph


- Incorporation of trajectory motion information
- Use two-dimensional motion histogram:
 - Avoid edges between different local maxima
 - Use spatial proximity for data points in a dominant motion

Design New Auxiliary Graph

- Incorporation of trajectory motion information
- Use two-dimensional motion histogram:
 - Avoid edges between different local maxima
 - Use spatial proximity for data points in a dominant motion

Example

Outline

- **1** Motion Segmentation based on Hypergraphs
- **2** Incorporation of Motion-coherent Affinities
- **3** Experimental Results
- **4** Conclusions

- Segmentation error: wrongly classified trajectories
- Results given for different trajectory lengths f_s (generate subsequences)

Segmentation Error [%] on Benchmark Hopkins155

	Mean		Median	
f _s	reference	proposed	reference	proposed
3	7.96	7.03	0.84	0.67
4	5.76	5.32	0.0	0.0
5	4.94	4.71	0.0	0.0
6	4.64	4.36	0.0	0.0
7	3.79	3.61	0.0	0.0
8	4.03	3.58	0.0	0.0
9	3.76	3.75	0.0	0.0
10	3.87	3.83	0.0	0.0

- Segmentation error: wrongly classified trajectories
- Results given for different trajectory lengths f_s (generate subsequences)

Segmentation Error [%] on Benchmark MTPV

	Mean		Median	
f _s	reference	proposed	reference	proposed
3	26.96	21.06	32.27	22.60
4	21.30	14.20	22.83	0.51
5	19.91	12.69	17.87	0.29
6	18.27	12.60	9.74	0.30
7	19.01	11.09	12.30	0.23
8	18.66	12.09	10.75	0.25
9	17.46	11.18	1.21	0.24
10	16.83	11.16	1.87	0.24

Mean Computation Time in Seconds

	Mean		Median	
Benchmark	reference	proposed	reference	proposed
Hopkins	8.83s	2.49s	5.53s	2.12s
MTPV	7.98s	4.30s	4.26s	2.75s

• Lower graph complexity leads to smaller computation times

Outline

- **1** Motion Segmentation based on Hypergraphs
- **2** Incorporation of Motion-coherent Affinities
- **B** Experimental Results
- **4** Conclusions

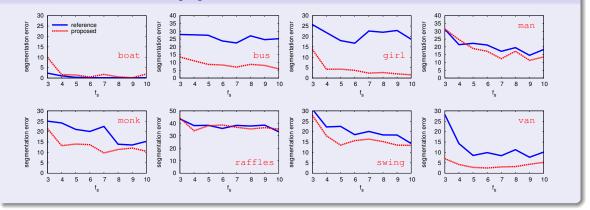
Analysis: Hypergraph-based Motion Segmentation

- State of the art approach (Pulak et al. ECCV 2014) provides general solution
- Good performance on Hopkins155
 - Spatial proximity used in auxiliary graph good choice
- Decreased performance on MTPV benchmark
 - Short trajectories \rightarrow spatial proximity less beneficial

Proposal: Motion-Coherent Affinities

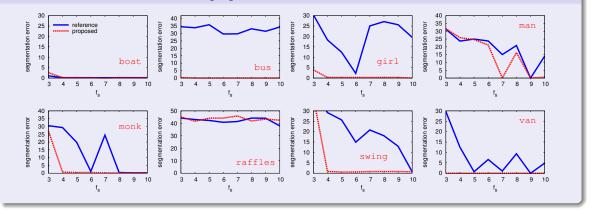
- Improves auxiliary graph
- \rightarrow Similar performance on Hopkin155
- $\rightarrow\,$ Significantly improved performance on MTPV (up to 40%)
- $\rightarrow\,$ Decreased computation time

VISCODA


(VISCODA GmbH)

Motion-coherent Affinities for Hypergraph based Motio

22. Aug. 2017 17 / 17


Hypergraph	
	Vertices # Degree 1 1 2 1 3 0 4 1 5 3 6 2 7 2 Edge # Degree 1 3
H = (V, E)	
$V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$	4 1
$E = \{e_1, e_2, e_3, e_4\}$	
$= \{\{v_1, v_5, v_7\}, \{v_4, v_5, v_6, v_7\}, \{v_5, v_6\}, \{v_5, v_6\}, \{v_6, v_7\}, \{v_7, v_6\}, \{v_8, v_8\}, \{v_8, v_8\}$	$\{v_2\}$

Mean Segmentation Error [%] on MTPV Benchmark

Median of Segmentation Error [%] on MTPV Benchmark

