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Abstract. In automated driving systems, stereo cameras gain in importance for
highly accurate perception using classical depth map estimation and machine
learning based perception tasks. For this, high-impact datasets were published,
e.g., KITTI, Cityscapes, ApolloScape, or Argoverse. These datasets are used for
the evaluation of classical stereo vision approaches as well as for the learning of
machine learning models. The stereo camera configuration has significant influ-
ence on the inferred models which provide object detection, object tracking, and
3D scene reconstruction. Thus, the accuracy of the camera calibration is of high
importance, especially when safety critical functions are addressed.
We propose a simple but effective method for the accuracy evaluation of stereo
camera calibration and provide a comparison for current highly influential stereo
image datasets. The developed metric is then used as cost function to realize the
optimization of the given camera parameters.
The evaluations show strongly varying accuracies for different datasets and vary-
ing accuracies within a dataset. Datasets with frequent on-site recalibration gen-
erally provide higher accuracies while others show suboptimal results. We can
infer that mechanical instabilities spoil the usability of these datasets. To counter-
act this, the proposed optimization minimizes the proposed error metric leading
to accurately rectified stereo images.
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1 Introduction

Depth estimation from stereo cameras is a fundamental Computer Vision task [13, 34]
with applications in many fields, such as autonomous driving, robotics, scene under-
standing, and medical diagnosis. Especially for automated driving, stereo cameras have
recently gained much importance for challenges such as object detection, tracking, and
3D scene reconstruction [4,30]. Since these applications are designed for safety critical
function, i.e., to prevent accidents, the accuracy of the depth estimation is important.
For the accurate mapping from 2D image content to 3D coordinates the calibration of
the sensors is required. Thus, stereo vision datasets include intrinsic and extrinsic sen-
sor calibration parameters. Camera calibration is a time-consuming, complicated, and
semi-automatic task and there are several approaches for the optimization of the calibra-
tion parameters. Calibration procedures employ 2D patterns [17], structured light [26],
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(a) Rectified stereo image (b) Vertical disparity dy for corresponding image points in the rectified image
pair in Fig. 1a. We show dy with respect to the x-coordinate (left) and color-
coded with respect to the (x/y) position in the left stereo image (right).

Fig. 1: Visualization of the vertical disparity dy in pixels. For rectified images computed from
accurate stereo calibration, the vertical disparity should be zero and have green color in the right
visualization of Fig. 1b. In this example, a significant error, positive (red) and negative (blue), is
visible. The error is dependent on the image position and results from suboptimal calibration.

and calibration tools [14,22]. Nevertheless, the accuracies of the calibrations are usually
not provided by the authors of a dataset.

Stereo Vision has a long history in the field of Computer Vision. Traditional ap-
proaches [19, 21, 26] use rectified images to estimate the depth of corresponding points
from their positions in the images. The rectification eases the disparity estimation since
the search space for the correspondence of a point in the left image is limited to a small
stripe in the right image. If the calibration is optimal, both points have the same y-
coordinate. For erroneous calibration, vertical distances occur, and traditional methods
may not be able to establish enough corresponding points. Recent methods employ Neu-
ral Networks for the end-to-end learning of depth maps [5,6,18,23,28,29,31,32,35] and
dominate current performance leaderboards. The learned models implicitly incorporate
the camera configuration during training and avoid the explicit search for corresponding
image points. Nevertheless, rectified images are usually used for training and evalua-
tion since these images are included in most datasets. Additionally, the standardized
camera configuration should increase the transferability of the model from one dataset
to another. Finally, rectified images ease the performance evaluation. A rectified stereo
image pair is computed based on the calibration of the stereo camera system. Thus, the
calibration accuracy is important since errors in the calibration will propagate to the
results. A few papers address the misalignment of rectified stereo images. In [9], the
sensitivity of 3D reconstruction to erroneous camera calibration is derived. Errors in
different parameters of the stereo camera system lead to different effects in the recon-
struction. In [2], synthetic data is used to validate the resulting depth error.

Numerous datasets were published for the evaluation of Stereo Vision approaches [4,
8,15,16,20,26,33]. Often, several recording days are employed to provide a significant
variability in the dataset, e.g., different lighting conditions [15] or varying weather [11].
For the usage in the dataset, the authors provide rectified images. They are computed
based on the camera calibration resulting from the selected calibration procedure. As
variances in the dataset are achieved by data capturing on multiple days, weeks, or even
seasons, the camera system should be frequently recalibrated since small differences in
the extrinsic parameters are likely to occur.
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To quantify the calibration accuracy of stereo camera systems, we propose an eval-
uation which estimates the deviation of the provided image content from the expected
rectified stereo configuration. For a stereo camera with correct calibration parameters,
corresponding points in rectified images have the same y-coordinate. Thus, a distance
dy between the y-coordinates indicates the calibration error. The distance dy is visual-
ized in Fig. 1 for an example stereo image of the ApolloScape dataset [20]. We show dy
for corresponding points with respect to the x-coordinate (Fig. 1b, left) and color-coded
with respect to the (x/y) position (Fig. 1b, right) in the left stereo image. The example
shows a large systematic error with dy < 0 in the bottom left image region and dy > 0
in the top right part of the image. We can infer that this is caused by a suboptimal stereo
camera calibration. This paper evaluates the stereo calibration accuracies of datasets.
Secondly, we show that the proposed measure for stereo calibration accuracy can be
used to optimize the calibration parameters. A simple but effective procedure for the
optimization is followed. Based on the new calibration parameters the stereo images
are subject to an additional rectification step. We demonstrate that the resulting images
have significantly reduced stereo calibration error.

In the following sections, the proposed accuracy evaluation is done for current
highly influential stereo vision datasets targeting automotive applications. We show that
significant calibration errors occur in current state of the art datasets. In Sec. 2, the eval-
uation procedure is derived in detail. Results and comparisons are shown in Sec. 3. The
optimization of camera parameters using the derived measure is shown and discussed
in Sec. 4. In Sec. 5, conclusions are drawn.

2 Accuracy of Stereo Vision Datasets

In [9], the sensitivity of 3D reconstruction to erroneous camera calibration in derived.
Erroneous camera parameters affect the quality of both the rectification and the 3D re-
construction. For given disparity error ∆d in pixels (or normalized coordinates), the
range uncertainty increases quadratically with distance. A consequence of vertical mis-
alignment in the rectified stereo image is that corresponding pixels no longer have the
same y-coordinate (same scanline) and most stereo matching algorithms deteriorate
since the search space may not contain corresponding regions. Thus, in practical ap-
plications no correspondence might be found at all. Hence, the vertical misalignment
should be small.

In all considered datasets (cf. Sec. 2.1) the stereo images are given in rectified
stereo configuration, i.e., the extrinsic parameters of the cameras share the same ro-
tation angles and image target plane. Their extrinsics only differ by a translation vector.
It follows, that corresponding image points in left and right image have the same y-
coordinate which eases the analysis significantly. Then, the depth z is calculated from
the horizontal disparity dx, the baseline b, and the focallength f as z = f · b

dx
. Since

real cameras are not installed accurately in rectified stereo configuration, camera pa-
rameters and images are transformed using rectification [24]. For the rectification, ac-
curately calibrated cameras are required. Otherwise, a vertical offset dy is encountered
when comparing corresponding points. Inversely, this offset can be used to quantify the
accuracy of the original calibration.
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Table 1: Overview on current highly-influential stereo datasets. All datasets provide rectified
images based on the respective calibration procedure. NI: No Information

Dataset Resolution Baseline Calibration publ.

Middelbury [26] 5.4MP 2820×1920 14-40 cm 2D patterns + struct. light 2014
KITTI [16] 0.5MP 1242× 375 54 cm 2D patterns [17] 2015
Cityscapes [8] 2.0MP 2048×1024 22 cm 2D patterns [22] 2016
Driving Stereo [33] 0.4MP 881× 400 54 cm 2D patterns + MATLAB toolbox 2019
ApolloScape [20] 2.9MP 3130× 960 29.9 cm NI 2019
Argoverse 1.1 [4] 5.0MP 2464×2056 29.9 cm NI 2019
Virtual KITTI 2 [3] 0.5MP 1242× 375 54 cm synthetic dataset 2020
DSEC [15] 1.6MP 1440×1080 55 cm 2D patterns + Kalibr toolbox [14] 2021

In this section, we show an overview on the stereo vision datasets in Sec. 2.1. Then,
the measure for the accuracy of the stereo calibration is derived in Sec. 2.2.

2.1 Stereo Dataset overview

Numerous datasets were published for the evaluation of Stereo Vision approaches. In
Tab. 1, we show an overview on current high-impact datasets which focus on automated
driving and, as a reference, Middlebury 2014. All considered datasets include rectified
stereo images. KITTI [16], Virtual KITTI 2 [3], Cityscapes [8], DrivingStereo [33], and
DSEC [15] focus on the stereo perception task. In KITTI, Driving Stereo, and DSEC,
ground truth depth information is derived using SGM [19] and a filtering approach based
on LiDAR point clouds [27]. The Cityscapes dataset comes with depth information
derived from the stereo camera system. In the DSEC dataset, dense depth maps are
used for the evaluation of event cameras. Argoverse 1.1 [4] and ApolloScape [20] target
360◦ view with multiple cameras. Additional stereo cameras face to the front and recti-
fied stereo images are provided. Similar to the comprehensive KITTI stereo evaluation
leaderboard, stereo competitions are provided.

Due to the possibility of mechanical variabilities, the camera extrinsic parameters
may change slightly throughout the dataset acquisition. Thus, a recalibration is recom-
mended to account the possibly changing camera orientation during the capturing pro-
cess of the whole dataset. The KITTI and Cityscapes datasets provide new calibration
parameters for each subset. The DrivingStereo dataset includes three acquisition periods
from July to October in 2018 (2018-07, 2018-08, and 2018-10) with one separate cali-
bration for each period. The data recording is done on 42 different days. DSEC includes
five different calibration sets for 53 sequences. The Argoverse 1.1 dataset includes one
set of stereo camera parameters only. The follow-up work Argoverse 2 [30] contains
stereo cameras, but the provided images are unrectified. The ApolloScape dataset does
not include the stereo calibration parameters, but rectified images.

The Virtual KITTI 2 dataset is a synthetically generated dataset. Thus, the calibra-
tion is correct by design. This dataset serves as a baseline for the proposed accuracy
evaluation approach.
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Fig. 2: Corresponding points (blue) for a rectified stereo image. The search space in the right
image is determined in horizontal direction by the minimal/maximal disparity and in vertical
direction by a small vertical boundary. Common approaches assume that corresponding points
have the same vertical coordinate.

2.2 Vertical Disparity

For the stereo calibration accuracy measure, we assume rectified image pairs. In this
configuration, the correspondence analysis can be reduced to a limited search space.
We make use of a classical combination of scale invariant keypoint detection and de-
scriptor computation and select A-KAZE keypoints and descriptors [1] since they are
known for the highly accurate subpixel localization [7]. Recent methods, e.g., [10], us-
ing machine learning for the correspondence analysis have shown their strength in the
keypoint matching, even for challenging scenarios, but not in localization accuracy.

For rectified stereo images, corresponding image points in the left and right image
should be located in the same scanline, i.e., they have the same y-coordinate and their
positions only differ by a horizontal disparity dx. We assume a small, but non-zero
vertical offset dy as shown in Fig. 2. Since the search region is small, the probability of
outliers, i.e., wrongly established correspondences is small. We will later see that there
are a few outliers, but they are negligible for the evaluation.

For each corresponding feature point pair pl,pr, the disparity ∆d = (dx, dy)
t =

pr−pl is determined. We evaluate the mean of vertical disparities for all corresponding
n features points:

ϵ =
1

n

n∑
i=1

d(i)y (1)

Additionally, the mean of the absolute vertical disparities for all corresponding n fea-
tures points is considered:

|ϵ| = 1

n

n∑
i=1

|d(i)y | (2)

While the ϵ in Eq. (1) indicates the systematic offset resulting from the calibration
inaccuracies, |ϵ| in Eq. (2) provides the error magnitude. Clearly, inaccuracies in the
feature point positions and mismatched feature points will add a bias which do not
belong to a calibration issue. The ϵ in Eq. (1) should be rather unaffected from feature
correspondence inaccuracies since we can assume that their errors mitigate. The |ϵ| in
Eq. (2) sums up all unwanted error contributions and, therefore, is our proposed measure
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(a) Middlebury 2014:
Adirondack

(b) KITTI: i = 18 from
0011

(c) Cityscapes: i = 3 from
Aachen

(d) DrivingStereo 2018-10-
11, i = 369

Fig. 3: Exemplary visualizations of the vertical disparities dy over x-coordinate (top row) and
the color-coded dy for each keypoint position (x/y) in the image (bottom row). The examples
show small mean vertical disparities ϵ such as ϵ = 0.02 for Middlebury (Fig. 3a), ϵ = 0.13 for
KITTI (Fig. 3b), and ϵ = 0.21 for Cityscapes (Fig. 3c). For the DrivingStereo example image pair,
a larger ϵ = 1.15 is obtained. A large ϵ, indicates a systematic error induced by the suboptimal
stereo calibration parameters (cf. Eq. (1)). This is visualized by the deviation from zero (top row)
and by red / blue color (bottom row). See also the example in Fig. 1.

for the stereo calibration accuracy. For simplicity, we measure dy in pixels and keep in
mind that the image resolution has an influence on the resulting error in the respective
application.

3 Accuracy Evaluation of Stereo Vision Datasets

To quantify the stereo calibration accuracy, the mean of the vertical disparities ϵ (Eq. (1))
and the mean of the absolute vertical disparities |ϵ| (Eq. (2)) as derived in Sec. 2.2 are
used. For the correspondence analysis, A-KAZE keypoints and descriptors [1] are used
due to the superior subpixel accuracy of detected keypoints. Visualizations of the ver-
tical disparities for a single stereo image pair are shown in Fig. 1b and in Fig. 3. The
examples in Fig. 3 show optimal calibration (Fig. 3a), small calibration errors (Figs. 3b
and 3c), and slightly increased errors (Fig. 3d). In Fig. 1b, large errors occur.

It is known that the spatial distribution of feature points of a detector is dependent
on the image content [12]. To account for different local distributions of the feature
point positions, several images of a dataset sequence are considered, and the results are
accumulated. The aim is to provide a dense spatial feature distribution for visualizations
as shown in Fig. 3. As a compromise, we visualize 25 images of a sequence sampled
equidistantly over time for Figs. 4 to 7, top and center row.

The following Stereo Vision datasets are considered: Virtual KITTI 2 (serves as a
baseline), KITTI, Cityscapes, DSEC, DrivingStereo, ApolloScape, and Argoverse 1.1.
From each dataset, representative sequences, i.e., with varying recording dates, are se-
lected for the evaluation. In Secs. 3.1 and 3.2, the results are visualized (Figs. 4 to 7)
and discussed. Tab. 2 summarizes the calibration errors and provides the comparison
between the selected stereo datasets.
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(a) VKITTI
- Scene 0020

(b) KITTI
- Scene 0011

(c) KITTI
- Scene 0047

(d) KITTI
- Scene 0071

Fig. 4: Visualization of the vertical disparities dy for training sequences from Virtual KITTI 2
(Fig. 4a) and KITTI (Figs. 4b to 4d). For Fig. 4a, there is no calibration error and dy should be
near zero for all positions (top) and have green color (center). The mean values ϵ for the full
sequence are near zero (bottom). The KITTI examples show only small deviations and a slight
imbalance (top row). Consequently, nearly all points in the diagrams in the center row are green.
The mean values (bottom row) show vertical disparities below 0.25 px.

In Sec. 4, a method for the optimization of the stereo calibration parameters is pro-
posed and demonstrated. The optimized parameters are used to generate new rectified
images and lead to significantly increased stereo calibration accuracy validated with ϵ
and |ϵ|. The proposed optimization procedure can be used for Online Calibration. The
idea is to modify the calibration if camera parameters change due to small changes
in their relative orientation during the capturing process. The optimization procedure
adapts the current camera parameters, and the time-consuming recalibration of the cam-
era system with calibration patterns can be avoided.

3.1 Experimental Results

The analysis results are visualized in Figs. 4 to 7. The diagrams on top show the vertical
disparities dy over x-coordinate (left image) for corresponding keypoints. The center
rows show the color-coded dy for each position (x/y) in the respective image. These
two visualizations employ accumulated results of 25 equidistantly sampled stereo image
pairs of a sequence. The accumulated visualizations shown that the vertical disparity
results are independent of image content. Some outliers are visible as points with a
large color distance to their neighbours (center row). The number of outliers is small,
and they are neglected for the analysis. The bottom row of Figs. 4 to 7 shows the error
measures ϵ and |ϵ| for all images of a dataset sequence. In Tab. 2, mean and variance



8 K. Cordes and H. Broszio

(a) Cityscapes
- Stuttgart

(b) Cityscapes
- Aachen

(c) DSEC
- Interlaken 00e

(d) DSEC
- ZurichCity 00b

Fig. 5: Visualization of the vertical disparities dy and their mean values for training sequences
from Cityscapes (Figs. 5a and 5b) and DSEC (Figs. 5c and 5d). For Cityscapes, small systematic
errors occur as small deviations for ϵ from y = 0. For the two DSEC sequences, larger errors
occur with different shape and ϵ < 0 for Fig. 5c versus ϵ > 0 for Fig. 5d. Compared KITTI
in Fig. 4, Cityscapes shows similar error magnitude while the error of DSEC is larger.

of ϵ for the selected sequences are listed. The results are discussed separately for each
dataset in the following paragraphs.

Virtual KITTI 2: no systematic error This sequence serves as a baseline. The results
for the Virtual KITTI 2 - scene 20 are shown in Fig. 4a. Since this is a synthetic dataset,
the calibration is correct. Thus, errors are caused by inaccurate keypoint localization and
mismatched keypoints. The mean vertical disparity ϵ is near zero for all 836 image pairs
of the sequence. The mean over all images is small (0.083 px), cf. Tab. 2. Thus, there is
no systematic error in the stereo calibration. The mean for the absolute vertical disparity
|ϵ| is 0.391. This is surprisingly high and shows that the localization accuracy of the
features detector is not optimal for synthetic image content with a lack of distinctive
texture details. Nevertheless, the results demonstrate a diminishing systematic error.
The proposed metric provides reasonable output. The result of the sequence scene 20 is
representative for the whole dataset Virtual KITTI 2.

KITTI: low error, mean vertical disparity below 0.25 px The KITTI dataset includes
new calibration parameters for each recording. Our results in Figs. 4b to 4d show small
mean vertical disparities with a similar magnitude throughout the sequences. For se-
quence 0011 ( Fig. 4b), the mean of ϵ for the sequence of 232 images is 0.203 px while
the mean of |ϵ| for this sequence is 0.455 px (cf. Tab. 2). Both examples 0047 (Fig. 4c)
and 0071 (Fig. 4d) show similar results with low error. The mean vertical disparity ϵ
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(a) DrivingStereo
- 2018-07-09

(b) DrivingStereo
- 2018-07-11

(c) DrivingStereo
- 2018-08-01

(d) DrivingStereo
- 2018-10-11

Fig. 6: Visualization of the vertical disparities dy and their mean values for training sequences
from DrivingStereo. The diagrams show different error shapes. Compared to DSEC (Figs. 5c
and 5d), DrivingStereo shows similar error magnitude.

is below 0.25 px for all images. The error is independent of the image region. The er-
ror magnitude is representative for the whole dataset. Thus, the KITTI dataset provides
high quality relative stereo calibrations.

Cityscapes: low error, mean vertical disparity below 0.25 px The Cityscapes dataset
includes new calibration parameters for each recording. We show results for two se-
quences in Figs. 5a and 5b. Both provide small errors with a magnitude similar to the
KITTI example (mean vertical disparities below 0.25 px, no dependency on image re-
gion). We verified the result for many sequences of the set. The Cityscapes dataset
provides high quality relative stereo calibrations.

DSEC: varying error up to 1.5 px The DSEC dataset targets the validation of stereo
event cameras. It includes 53 sequences in three different areas of Switzerland. Five
different calibration sets are provided. In Figs. 5c and 5d, example sequences from two
different sets are visualized. While the magnitude of the measured vertical disparities
are similar, the structure is different. For Interlaken, we have vertical disparities dy <
0 for all image positions while obtaining dy > 0 for all image positions in Zurich
City. The error magnitude is up to 1.5 px which is mediocre accuracy for the datasets
considered in this paper. For demonstration, we optimize one set of camera parameters
(DSEC - ZurichCity 00b) and show the results in Sec. 4.

DrivingStereo: varying error up to 1.5 px The DrivingStereo dataset was recorded
on 42 different days in 3 recording periods {2018-07, 2018-08, 2018-10}. Three dif-
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(a) ApolloScape
- Trainset 01

(b) ApolloScape
- Testset

(c) Argoverse 1.1
- Trainset, parts 06, 07

(d) Argoverse 1.1
- Trainset, parts 10, 11

Fig. 7: Visualization of the vertical disparities dy and their mean values for sequences from Apol-
loScape and Argoverse. Large vertical disparities in positive (red) and in negative direction (blue)
are clearly visible. Compared to the previous visualizations (Figs. 4 to 6), ApolloScape and Ar-
goverse show larger errors. The Argoverse examples show different error shape with ϵ < 0
for Fig. 7c versus ϵ > 0 for Fig. 7d.

ferent calibrations are provided for the sequences of the dataset. In Fig. 6, we show the
evaluation results for sequences from different periods of DrivingStereo. The evaluation
for the vertical error shows differing results for these sequences. Sequence 2018-07-09
is the first sequence of one of the three recording periods and shows mean disparity
values of < 0.6 px, cf. Fig. 6a. Two days later (Fig. 6b), a significant increase of the
vertical disparities occurs (up to 1.5 px). Likewise, the other two examples (Figs. 6c
and 6d) show mean vertical disparities of up to 1.5 px. We can infer that a more fre-
quent calibration would have been advantageous for the stereo calibration accuracy of
the dataset. Additionally, the mean values have a large variation throughout a sequence,
verified by large standard deviation compared to KITTI and Cityscapes as shown in
Tab. 2. The cameras have a jitter in their relative orientation during the drive. As doc-
umented in [33], the stereo system consists of two single cameras, one is mounted on
the top center, and the other mounted on the top right. The setup is similar to the KITTI
setup but there, the jitter does not occur.

ApolloScape: varying, large errors up to 5px The ApolloScape dataset targets 360◦

view with six video cameras. The two front facing cameras build the stereo perception.
Our analysis of the provided rectified stereo images are visualized in Figs. 7a and 7b.
Both examples show similar magnitude and structure of the resulting vertical disparities
with a magnitude of up to 5px (top row). The largest errors are visible in the bottom
third (dy < 0) and in the top right corner (dy > 0) of the image, cf. center row. The
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Table 2: Mean and variance of ϵ and |ϵ| for selected sequences. While the mean results of ϵ
for the Cityscapes sequences are similar and near zero, very different values are obtained for
other sequences, in particular for the Argoverse examples. This indicates a change in the camera
configuration which is not captured by the provided calibration. The deviation from zero shows
the amount of the calibration error in pixels. A small standard deviation shows the stability of
the proposed method for calibration error measurement throughout the respective stereo image
sequence. The Virtual KITTI 2 results demonstrate the baseline for the measure.

Dataset Sequence
ϵ |ϵ|

Visualization
mean std.dev mean std.dev

Virtual KITTI 2 Scene 20 0.083 0.077 0.391 0.056 Fig. 4a
KITTI Drive 0011 −0.203 0.354 0.455 0.027 Fig. 4b
KITTI Drive 0047 −0.069 0.054 0.432 0.036 Fig. 4c
KITTI Drive 0071 −0.167 0.063 0.498 0.048 Fig. 4d
Cityscapes Stuttgart 0.083 0.077 0.391 0.056 Fig. 5a
Cityscapes Aachen 0.146 0.056 0.381 0.061 Fig. 5b
DSEC Interlaken 00e 0.279 0.095 0.642 0.097 Fig. 5c
DSEC Zurich City 00b −0.411 0.071 0.676 0.044 Fig. 5d
DrivingStereo 2018-07-09 0.229 0.136 0.467 0.104 Fig. 6a
DrivingStereo 2018-07-11 0.944 0.288 1.100 0.242 Fig. 6b
DrivingStereo 2018-08-01 0.494 0.494 0.840 0.299 Fig. 6c
DrivingStereo 2018-10-11 0.965 0.272 1.155 0.207 Fig. 6d
ApolloScape TrainSet 01 −0.181 0.412 1.056 0.327 Fig. 7a
ApolloScape TestSet −0.268 0.490 1.202 0.315 Fig. 7b
ArgoVerse 1.1 TrainSet pt. 06,07 −2.583 0.566 2.904 0.553 Fig. 7c
ArgoVerse 1.1 TrainSet pt. 10,11 2.073 0.44 2.366 0.451 Fig. 7d

teaser figure Fig. 1 depicts the same tendency. Like in the results of DrivingStereo, jitter
occurs in the ApolloScape stereo data resulting in a standard deviation of larger that 0.4
(Tab. 2).

For demonstration, we optimize one set of camera parameters and show the results
in Sec. 4. Our analysis and the rectified images in Fig. 1 are used to estimate optimized
camera parameters.

ArgoVerse 1.1: varying, large errors up to 5px The ArgoVerse 1.1 dataset provides
surround view video with seven ring cameras. Additional stereo camera systems are
provided. Although the focus is on surround view, there are challenges and leader-
boards using the rectified stereo images. Our results for the vertical disparities of these
images are visualized in Figs. 7c and 7d. The top row depicts a slanted distribution.
The vertical disparity clearly increases with the x-coordinate. For Fig. 7c, most dy lie
below the x-axis, for Fig. 7d, most dy are above the x-axis. Thus, large regions in the
visualizations in the second row are colored red and blue. The sequence evaluations
(bottom row) show the different shape with mean values ϵ > 0 and ϵ < 0 for different
sections of the train set. The resulting disparities have the largest standard deviation
(cf. Tab. 2) in the test field. We infer that the relative camera orientation changed after
the initial calibration and that the change has not been covered by an adapted stereo
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(a) New rectified stereo image
(b) Vertical disparity error for corresponding image points.

Fig. 8: Error analysis of the optimized parameters. Here, the rectified images (Fig. 8a) are com-
puted based on the optimized camera parameters from our optimization procedure (Sec. 4). The
vertical disparity errors dy decreased significantly (Fig. 8b). The remaining vertical disparities
are distributed around zero independent of the image coordinate (Fig. 8b, left). Thus, nearly all
data points have green color (Fig. 8b, right).

calibration. We optimize one set of camera parameters (TrainSet pt.06) and show the
results in Sec. 4.

3.2 Summary and Discussion

The proposed measure for vertical disparity reveals the misalignment of rectified images
of a stereo camera system. Since all considered datasets provide rectified images, the
causes for the errors are erroneous extrinsic camera parameters. The considered datasets
show varying error magnitude and shape (cf. Figs. 4 to 7 and Tab. 2). In some examples,
the result varies largely within a dataset, e.g., Fig. 6a versus Fig. 6b and Fig. 7c versus
Fig. 7d.

The error magnitude is small for KITTI and Cityscapes, medium for DrivingStereo
and DSEC, and rather large for ApolloScape and Argoverse 1.1. In the latter cases, clas-
sical stereo algorithms suffer from the biased rectified images. For Machine Learning
based approaches, an erroneous stereo configuration is learned limiting the transferabil-
ity of the resulting model. These errors are larger than expected, even when considering
the larger image resolutions of the newer datasets.

Using the measure for stereo calibration accuracy, the calibration parameters can be
optimized using the error as cost function. For the optimization, camera parameters are
treated as variables and the mean vertical disparity in Eq. (2) is minimized. In case of
convergence, the parameters are considered as improved and new rectified images are
generated. We follow this idea in Sec. 4.

4 Optimization of the Stereo Calibration

After demonstrating that the proposed methodology yields a valid measure for stereo
calibration accuracy, we now use it for the optimization of the calibration parameters.
A stereo calibration with minimal vertical disparity as expressed in Eq. (2) shall be
favoured.

In three experiments, we derive improved parameters based on the rectified image
pairs for
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Fig. 9: Visualizations of the optimized parameters for the DSEC - ZurichCity 00b sequence (cf.
Fig. 5d). The systematic error decreased significantly.

(a) the ApolloScape example image pair used in Fig. 1,
(b) the DSEC ZurichCity 00b sequence example in Fig. 5d, and
(c) the Argoverse 1.1 Trainset part 06 example in Fig. 7c.

For the optimization of camera parameters, we aim at minimizing the mean vertical
disparity in Eq. (2). Therefore, the Differential Evolution (DE) algorithm [25] is used.
It is known as a simple and efficient global optimization method for continuous prob-
lem spaces. Here, we only optimize 3 parameters (angles of the right camera) within
reasonable boundaries. We assume that the stereo camera baseline is correct, i.e., the
relative position between left and right camera is unchanged. Thus, we have an easy op-
timization problem which quickly convergences to a solution with the desired camera
angles. The resulting relative angles for the stereo cameras in the three experiments are
as follows:

(a) (pan, tilt, roll) = (0.00832◦, 0.00999◦, 0.00053◦)
(b) (pan, tilt, roll) = (0.16591◦,−0.00286◦, 0.12576◦)
(c) (pan, tilt, roll) = (−0.00027◦, 0.02195◦, 0.16709◦)

Fig. 10: Visualizations of the optimized parameters for the Argoverse 1.1
- Trainset, part 06 (cf. Fig. 7c, left part). The systematic error decreased significantly.

With the derived camera parameters, new rectified images are generated. For (a),
the new rectified images are shown in Fig. 8a. The difference to Fig. 1a is tiny, but its
impact is huge. For validation, the error measures for these images are shown in Fig. 8b
for experiment (a), in Fig. 9 for experiment (b), and in Fig. 10 for experiment (c).
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For experiment (b) and (c), the full sequence is evaluated with 1462 and 289 images,
respectively. Compared to the original versions (Fig. 1, Fig. 5d, Fig. 7c, left part), a
significant decrease of the vertical disparity error is visible. These experiments show
the practicability of the proposed measure for the relative recalibration of a stereo cam-
era. This procedure can be used to adjust the extrinsic parameters during acquisition
(Online-calibration) since no calibration patterns are needed.

5 Conclusions

The calibration accuracy of high-impact Stereo Vision datasets is evaluated using the
proposed measure for misalignment of the rectified images. Therefore, a keypoints cor-
respondence analysis with high localization accuracy is employed. From the keypoints,
vertical disparities are computed. For rectified images computed with accurate calibra-
tion, the vertical disparity is zero. For several Stereo Vision datasets, we obtain system-
atic errors.

We evaluate the stereo calibration accuracy of datasets targeting automated driving:
KITTI, Cityscapes, DSEC, DrivingStereo, ApolloScape, and Argoverse 1.1. The data
from Middlebury 2014 and Virtual KITTI 2 serve as baselines. The comparison shows
varying accuracies and error shapes. While KITTI and Cityscapes provide reasonable
accuracies, ApolloScape and Argoverse 1.1 show surprisingly large errors.

We infer that small changes in the camera orientation are likely to occur during
data acquisition, especially when there are large temporal distances between recordings.
These situations are found quite often in the considered datasets. As a conclusion, we
recommend frequent on-site recalibration when benchmark data is generated. The pro-
posed accuracy measure provides the possibility for error control and indicates the need
for a recalibration. Furthermore, an optimization scheme is proposed which improves
the stereo camera calibration. Rectified images computed with the new calibration pa-
rameters do not show a systematic error. The proposed methodology enables Online
Calibration since calibration patterns are not needed.

More visualizations of the results are shown in our demonstration video:
https://youtu.be/QDXiGDdth1o.
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